Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Sort vs. Hash Join Revisited for Near-Memory Execution
 
conference presentation

Sort vs. Hash Join Revisited for Near-Memory Execution

Mirzadeh, Nooshin
•
Koçberber, Yusuf Onur  
•
Falsafi, Babak  
Show more
2015
5th Workshop on Architectures and Systems for Big Data ( ASBD 2015 )

Data movement between memory and CPU is a well-known energy bottleneck for analytics. Near-Memory Processing (NMP) is a promising approach for eliminating this bottleneck by shifting the bulk of the computation toward memory arrays in emerging stacked DRAM chips. Recent work in this space has been limited to regular computations that can be localized to a single DRAM partition. This paper examines a Join workload, which is fundamental to analytics and is characterized by irregular memory access patterns. We consider several join algorithms and show that while near-data execution can improve both energy-efficiency and performance, effective NMP algorithms must consider locality, access granularity, and microarchitecture of the stacked memory devices.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés