Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Low-NA focused vortex beam lithography for below 100-nm feature size at 405 nm illumination
 
conference paper

Low-NA focused vortex beam lithography for below 100-nm feature size at 405 nm illumination

Kim, Myun-Sik  
•
Scharf, Toralf  
•
Herzig, Hans Peter  
Show more
2013
Advanced Fabrication Technologies For Micro/Nano Optics And Photonics Vi
SPIE Photonics West 2013

There are varieties of novel methods, which demonstrate the super-resolution. For instance, an optically trapped sub-micron dielectric sphere serves as a near-field focusing lens to directly write patterns of ~100 nm in liquid, and accelerated metallic nanoparticles by optical force form a stamp on the substrate, coined optical force stamping lithography. Two-photon absorption lithography is another good example of super-resolution techniques for 100-nm target. Other breakthrough to achieve sub-100-nm pattern size is using two beams: for initiation and deactivation of polymerization with one color or with two colors and for absorbance modulation. Generally, such two-beam techniques rely on doughnut-shape spots, whose tiny dark center is a key feature to achieve such a small size. Here, we propose a new method to fabricate well-isolated single nano-structures using this doughnut-shape vortex beam but a single beam illumination is applied. Regardless of the NA, focusing of azimuthal polarization always assures the dark center while the radial polarization is often used to create a bright center by a high NA. When such vortex beams at λ=405 nm expose the positive photoresist, nano-cylinder are formed in the center of the circular exposed area. A decomposition of the doughnut beam leads to the two-half-lobes spot and the linear scanning of the decomposed spot produces nano-size line patterns. This is a fast and inexpensive way to fabricate well-isolated nano-solid-immersion-lenses or plasmonic nano-waveguides compared to other nano-fabrication methods, such as, electron beam lithography.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés