Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Safe Convex Learning under Uncertain Constraints
 
conference paper

Safe Convex Learning under Uncertain Constraints

Usmanova, Ilnura
•
Krause, Andreas
•
Kamgarpour, Maryam  
April 11, 2019
Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics
The 22nd International Conference on Artificial Intelligence and Statistics

We address the problem of minimizing a convex smooth function f(x) over a compact polyhedral set D given a stochastic zeroth-order constraint feedback model. This problem arises in safety-critical machine learning applications, such as personalized medicine and robotics. In such cases, one needs to ensure constraints are satisfied while exploring the decision space to find optimum of the loss function. We propose a new variant of the Frank-Wolfe algorithm, which applies to the case of uncertain linear constraints. Using robust optimization, we provide the convergence rate of the algorithm while guaranteeing feasibility of all iterates, with high probability.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés