Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Ab-initio numerical studies in semiconductor alloys
 
doctoral thesis

Ab-initio numerical studies in semiconductor alloys

Gironcoli, Stefano de
1992

This thesis is devoted to the theoretical study, by ab initio numerical methods, of the physical properties of substitutional semiconductor alloys. Nowadays, ab initio numerical methods allow to study quite accurately the physical properties of moderately complex periodic systems. These methods exploit the periodicity of the system, and can be applied to disordered systems (such as the substitutional semiconductor alloys), where the periodicity is lost, by replacing the original non-periodic system by a periodic one, which contains several unequivalent atoms in a large unit cell (supercell), distributed in such a way to reproduce the local atomic coordination present in the alloy. However, since this approximation is the better the larger the supercell used, an accurate description of disorder can require supercells so large (500 ÷ 1000 atoms) that the usual methods become too expensive and new techniques have to be developed. The chemical similarity between semiconductor components allows one to employ a perturbative approach in the study of their alloys. Exploiting the efficiency of modern perturbation techniques, we have been able to map the complex alloy problem onto much simpler models that, keeping the same accuracy of a complete first principles approach, can be easily studied with large supercells. By this approach, the structure, the thermodynamics, the lattice dynamics and the electronic structure of a few semiconductor alloys has been studied successfully.

  • Files
  • Details
  • Metrics
Type
doctoral thesis
DOI
10.5075/epfl-thesis-1087
Author(s)
Gironcoli, Stefano de
Advisors
Baldereschi, Alfonso  
Date Issued

1992

Publisher

EPFL

Publisher place

Lausanne

Thesis number

1087

Total of pages

92

EPFL units
CPNMC  
Available on Infoscience
March 16, 2005
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/209571
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés