Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Probabilistic Iterative LQR for Short Time Horizon MPC
 
conference paper

Probabilistic Iterative LQR for Short Time Horizon MPC

Lembono, Teguh Santoso  
•
Calinon, Sylvain  
January 1, 2021
2021 Ieee/Rsj International Conference On Intelligent Robots And Systems (Iros)
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

Optimal control is often used in robotics for planning a trajectory to achieve some desired behavior, as expressed by the cost function. Most works in optimal control focus on finding a single optimal trajectory, which is then typically tracked by another controller. In this work, we instead consider trajectory distribution as the solution of an optimal control problem, resulting in better tracking performance and a more stable controller. A Gaussian distribution is first obtained from an iterative Linear Quadratic Regulator (iLQR) solver. A short horizon Model Predictive Control (MPC) is then used to track this distribution. We show that tracking the distribution is more cost-efficient and robust as compared to tracking the mean or using iLQR feedback control. The proposed method is validated with kinematic control of 7-DoF Panda manipulator and dynamic control of 6-DoF quadcopter in simulation.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés