Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Castles fall from inside: Evidence for dominant internal photo-catalytic mechanisms during treatment of Saccharomyces cerevisiae by photo-Fenton at near-neutral pH
 
research article

Castles fall from inside: Evidence for dominant internal photo-catalytic mechanisms during treatment of Saccharomyces cerevisiae by photo-Fenton at near-neutral pH

Giannakis, Stefanos  
•
Ruales-Lonfat, Cristina  
•
Rtimi, Sami  
Show more
2016
Applied Catalysis B-Environmental

In this work, the antimicrobial effects of the photo-Fenton process on yeast cells were tested (Saccharomyces cerevisiae), an essential eukaryotic unicellular model of living cells. Near-neutral pH was used in all studies, while iron sulfate and iron citrate were evaluated as iron sources during S. cerevisiae photo Fenton inactivation under simulated solar light (hv/H2O2/Fe). The following indicators were monitored to decrypt the mechanism of yeast inactivation by neutral photo-Fenton process: cell viability by flow cytometry, damage at DNA level, as well as intracellular and extracellular proteins, assessed by gel electrophoresis. A significant loss of cultivability was monitored through the application of all the different photo-Fenton systems, attributed to the oxidative stresses applied. The mechanisms involved were the homogeneous action of dissolved iron and the heterogeneous action mode of iron oxides. The DNA and protein analyses indicated drastic intracellular damages, while external macromolecules (cell wall and membrane proteins) showed limited degradation. This marked internal photocatalytic processes as the main inactivation mechanism in S. cerevisiae. Different pathways are proposed, forming a general process of inactivation by the near-neutral photo-Fenton systems. (C) 2015 Elsevier B.V. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.apcatb.2015.12.016
Web of Science ID

WOS:000369452000015

Author(s)
Giannakis, Stefanos  
Ruales-Lonfat, Cristina  
Rtimi, Sami  
Thabet, Sana
Cotton, Pascale
Pulgarin, Cesar  
Date Issued

2016

Publisher

Elsevier

Published in
Applied Catalysis B-Environmental
Volume

185

Start page

150

End page

162

Subjects

Near-neutral photo-Fenton

•

Saccharomyces cerevisiae

•

Inactivation mechanism

•

DNA damage

•

Cytoplasmic and cell wall proteins

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
GPAO  
Available on Infoscience
April 1, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/125220
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés