Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Too Many Materials and Too Many Applications: An Experimental Problem Waiting for a Computational Solution
 
Loading...
Thumbnail Image
research article

Too Many Materials and Too Many Applications: An Experimental Problem Waiting for a Computational Solution

Ongari, Daniele  
•
Talirz, Leopold  
•
Smit, Berend  
November 25, 2020
Acs Central Science

Finding the best material for a specific application is the ultimate goal of materials discovery. However, there is also the reverse problem: when experimental groups discover a new material, they would like to know all the possible applications this material would be promising for. Computational modeling can aim to fulfill this expectation, thanks to the sustained growth of computing power and the collective engagement of the scientific community in developing more efficient and accurate workflows for predicting materials' performances. We discuss the impact that reproducibility and automation of the modeling protocols have on the field of gas adsorption in nanoporous crystals. We envision a platform that combines these tools and enables effective matching between promising materials and industrial applications.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés