Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Down-conversion of a single photon as a probe of many-body localization
 
research article

Down-conversion of a single photon as a probe of many-body localization

Mehta, Nitish
•
Kuzmin, Roman
•
Ciuti, Cristiano  
Show more
January 26, 2023
Nature

Decay of a particle into more particles is a ubiquitous phenomenon to interacting quantum systems, taking place in colliders, nuclear reactors or solids. In a nonlinear medium, even a single photon would decay by down-converting (splitting) into lower-frequency photons with the same total energy1, at a rate given by Fermi's golden rule. However, the energy-conservation condition cannot be matched precisely if the medium is finite and only supports quantized modes. In this case, the fate of the photon becomes the long-standing question of many-body localization, originally formulated as a gedanken experiment for the lifetime of a single Fermi-liquid quasiparticle confined to a quantum dot(2). Here we implement such an experiment using a superconducting multimode cavity, the nonlinearity of which was tailored to strongly violate the photon-number conservation. The resulting interaction attempts to convert a single photon excitation into a shower of low-energy photons but fails owing to the many-body localization mechanism, which manifests as a striking spectral fine structure of multiparticle resonances at the standing-wave-mode frequencies of the cavity. Each resonance was identified as a many-body state of radiation composed of photons from a broad frequency range and not obeying Fermi's golden rule theory. Our result introduces a new platform to explore the fundamentals of many-body localization without having to control many atoms or qubits(3-9).

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés