Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Accelerated photodegradation (minute range) of the commercial azo-dye Orange II mediated by Co3O4/Raschig rings in the presence of oxone
 
research article

Accelerated photodegradation (minute range) of the commercial azo-dye Orange II mediated by Co3O4/Raschig rings in the presence of oxone

Zhiyong, Y
•
Bensimon, M  
•
Laub, D  
Show more
2007
Journal of Molecular Catalysis A: Chemical

The accelerated discoloration of Orange II by an innovative Co3O4/Raschig ring photocatalyst (from now on Co3O4/RR) is feasible and proceeds to completion using oxone as an oxidant within the surprisingly short time of ∼5 min. The preparation of Co3O4 small clusters (2–10 nm in size) on RR is reported. The discoloration/mineralization of the azo-dye Orange II was carried out in a concentric coaxial photo-reactor and was a function of the Orange II and oxone concentrations, the solution pH and the recirculation rate. At bio-compatible pH-values, the concentration of Co-ions in solution after photocatalysis (15 min) was found to be between 0.5 and 2 ppm, within the limits allowed for treated waters. The generation of peroxide was observed as long as Orange II was still available in solution. By elemental analysis (EA), the amount of Co of the Raschig rings was determined to be ∼65% (w/w) before and after the photocatalysis. This confirms the stability observed during long-term operation of the Co3O4/RR catalyst. The sizes of the Co3O4 clusters on the RR surface were determined by transmission electron spectroscopy (TEM). A non-uniform distribution of Co3O4 particles on RR with sizes between 2 and 10 nm was found. The presence of Co-clusters on the RR-surface was confirmed by electron dispersive spectroscopy (EDS) showing 12.6% surface Co-enrichment before the photocatalysis and 18.8% surface enrichment after the photocatalysis. By confocal microscopy the irregularly thick shaped Co3O4 on the Raschig rings was analyzed. The most striking observation is very large shift of Co2p3/2 line from 779.6 eV at time zero to 782.2 eV within 10 min after due to the photocatalysis taking place. This indicates a strong reduction of electron density on the cobalt atoms of Co3O4/RR and providing the evidence for the strong oxidation properties of this catalyst.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1016/j.molcata.2007.03.023
Web of Science ID

WOS:000247432400003

Author(s)
Zhiyong, Y
Bensimon, M  
Laub, D  
Kiwi-Minsker, L  
Jardim, W
Mielczarski, E
Mielczarski, J
Kiwi, J  
Date Issued

2007

Published in
Journal of Molecular Catalysis A: Chemical
Volume

272

Issue

12

Start page

11

End page

19

Subjects

Discoloration/mineralization

•

Orange II

•

Oxone

•

Co3O4/Raschig rings

•

Photo-reactor

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
GEOLEP  
CIME  
LGRC  
Available on Infoscience
October 24, 2007
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/13293
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés