Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Three-Dimensional Writing of Highly Stretchable Organic Nanowires
 
research article

Three-Dimensional Writing of Highly Stretchable Organic Nanowires

Kim, Ji Tae
•
Pyo, Jaeyeon
•
Rho, Jonghyun
Show more
2012
Acs Macro Letters

Three-dimensional (3D) writing is a promising approach to realize stretchable electronics, but is so far limited to microscale features. We developed accurate 3D writing for highly stretchable organic nanowire arrays using a nanoscale polymer meniscus. Specifically, 3D nanoarches of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) with unprecedented stretchability, over 270%, and no compromise on the electrical characteristics were fabricated. Then, we integrated nanoarches into photoswitches, electrochemical transistors, and electrical interconnects. The impact of these successful tests goes well beyond these specific devices and opens the way to new classes of stretchable nanodevices based on organic materials.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés