Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Pathways to enhance electrochemical CO2 reduction identified through direct pore-level modeling
 
research article

Pathways to enhance electrochemical CO2 reduction identified through direct pore-level modeling

Johnson, Evan F.  
•
Boutin, Etienne  
•
Liu, Shuo  
Show more
2023
EES Catalysis

Electrochemical conversion of CO2 to fuels and valuable products is one pathway to reduce CO2 emissions. Electrolyzers using gas diffusion electrodes (GDEs) show much higher current densities than aqueous phase electrolyzers, yet models for multi-physical transport remain relatively undeveloped, often relying on volume-averaged approximations. Many physical phenomena interact inside the GDE, which is a multiphase environment (gaseous reactants and products, liquid electrolyte, and solid catalyst), and a multiscale problem, where ‘‘pore-scale’’ phenomena affect observations at the ‘‘macro-scale’’. We present a direct (not volume-averaged) pore-level transport model featuring a liquid electrolyte domain and a gaseous domain coupled at the liquid–gas interface. Transport is resolved, in 2D, around individual nanoparticles comprising the catalyst layer, including the electric double layer and steric effects. The GDE behavior at the pore-level is studied in detail under various idealized catalyst geometries configurations, showing how the catalyst layer thickness, roughness, and liquid wetting behavior all contribute to (or restrict) the transport necessary for CO2 reduction. The analysis identifies several pathways to enhance GDE performance, opening the possibility for increasing the current density by an order of magnitude or more. The results also suggest that the typical liquid–gas interface in the GDE of experimental demonstrations form a filled front rather than a wetting film, the electrochemical reaction is not taking place at a triple-phase boundary but rather a thicker zone around the triple-phase boundary, the solubility reduction at high electrolyte concentrations is an important contributor to transport limitations, and there is considerable heterogeneity in the use of the catalyst. The model allows unprecedented visualization of the transport dynamics inside the GDE across multiple length scales, making it a key step forward on the path to understanding and enhancing GDEs for electrochemical CO2 reduction.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1039/D3EY00122A
Author(s)
Johnson, Evan F.  
Boutin, Etienne  
Liu, Shuo  
Haussener, Sophia  
Date Issued

2023

Published in
EES Catalysis
Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LRESE  
FunderGrant Number

FNS-NCCR

180544

H2020

851441

Available on Infoscience
June 28, 2023
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/198583
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés