Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Thrombin-sensitive photodynamic agents: A novel strategy for selective synovectomy in rheumatoid arthritis
 
research article

Thrombin-sensitive photodynamic agents: A novel strategy for selective synovectomy in rheumatoid arthritis

Gabriel, Doris
•
Busso, Nathalie
•
So, Alexander
Show more
2009
Journal Of Controlled Release

Protease-sensitive macromolecular prodrugs have attracted interest for bio-responsive drug delivery to sites with up-regulated proteolytic activities such as inflammatory or cancerous lesions. Here we report the development of a novel polymeric photosensitizer prodrug (T-PS) to target thrombin, a protease up-regulated in synovial tissues of rheumatoid arthritis (RA) patients, for minimally invasive photodynamic synovectomy. In T-PS, multiple photosensitizer units are tethered to a polymeric backbone via short, thrombin-cleavable peptide linkers. Photoactivity of the prodrug is efficiently impaired due to energy transfer between neighbouring photosensitizer units. T-PS activation by exogenous and endogenous thrombin induced an increase in fluorescence emission by a factor of 16 after in vitro digestion and a selective fluorescence enhancement in arthritic lesions in vivo, in a collagen-induced arthritis mouse model. In vitro studies on primary human synoviocytes showed a phototoxic effect only after enzymatic digestion of the prodrug and light irradiation, thus demonstrating the functionality of T-PS induced PDT. The developed photosensitizer prodrugs combine the passive targeting capacity of macromolecular drug delivery systems with site-selective photosensitizer release and activation. They illuminate lesions with pathologically enhanced proteolytic activity and induce cell death, subsequent to irradiation. (c) 2009 Elsevier B.V. All rights reserved.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés