Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Competing Adaptive Networks
 
conference paper

Competing Adaptive Networks

Vlaski, Stefan  
•
Sayed, Ali H.  
January 1, 2021
2021 Ieee Statistical Signal Processing Workshop (Ssp)
IEEE Statistical Signal Processing Workshop (SSP)

Adaptive networks have the capability to pursue solutions of global stochastic optimization problems by relying only local interactions within neighborhoods. The diffusion of information through repeated interactions allows for globally optimal behavior, without the need for central coordination. Most existing strategies are developed for cooperative learning settings, where the objective of the network is common to all agents. We consider in this work a team setting, where a subset of the agents form a team with a common goal, while competing with the remainder of the network. We develop an algorithm for decentralized competition among teams of adaptive agents, analyze its dynamics and present an application in the decentralized training of generative adversarial neural networks.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés