Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Data-driven spatio-temporal discretization for pedestrian flow characterization
 
research article

Data-driven spatio-temporal discretization for pedestrian flow characterization

Nikolic, Marija  
•
Bierlaire, Michel  
2017
Transportation Research Procedia

We propose a novel approach to pedestrian flow characterization. The definitions of density, flow and velocity existing in the literature are extended through a data-driven spatio-temporal discretization framework. The framework is based on three-dimensional Voronoi diagrams. Synthetic data is used to empirically investigate the performance of the approach and to illustrate its advantages. Our approach outperforms the considered approaches from the literature in terms of the robustness with respect to the simulation noise and with respect to the sampling frequency. Additionally, the proposed approach is by design (i) independent from an arbitrarily chosen discretization; (ii) appropriate for the multidirectional composition of pedestrian traffic; (iii) able to reflect the heterogeneity of the pedestrian population; and (iv) applicable to pedestrian trajectories described either analytically or as a sample of points.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés