Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Scheduling communication on an SMP node parallel machine
 
conference paper

Scheduling communication on an SMP node parallel machine

Falsafi, Babak  
•
Wood, David A.
1997
Proceedings of the International Symposium on High-Performance Computer Architecture

Distributed-memory parallel computers and networks of workstations (NOWs) both rely on efficient communication over increasingly high-speed networks. Software communication protocols are often the performance bottleneck. Several current and proposed parallel systems address this problem by dedicating one general-purpose processor in a symmetric multiprocessor (SMP) node specifically for protocol processing. This scheduling convention reduces communication latency and increases effective bandwidth but also reduces the peak performance since the dedicated processor no longer performs computation. In this paper, we study a parallel machine with SMP nodes and compare two protocol processing policies: Fixed, which uses a dedicated protocol processor; and Floating, where all processors perform both computation and protocol processing. The results from synthetic microbenchmarks and five macrobenchmarks show that: (i) a dedicated protocol processor benefits light-weight protocols much more than heavy- weight protocols; (ii) fixed improves performance over Floating when communication becomes the bottleneck, which is more likely when the application is very communication-intensive, overheads are very high, or there are multiple (i.e., more than two) processors per node; (iii) a system with optimal cost-effectiveness is likely to include a dedicated protocol processor, at least for light-weight protocols

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

scheduling_communication.pdf

Access type

openaccess

Size

1.2 MB

Format

Adobe PDF

Checksum (MD5)

ea97c576c74e3be9881bfafceb964ccc

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés