Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Supervoxel-Based Segmentation of Mitochondria in EM Image Stacks with Learned Shape Features
 
research article

Supervoxel-Based Segmentation of Mitochondria in EM Image Stacks with Learned Shape Features

Lucchi, Aurélien  
•
Smith, Kevin  
•
Achanta, Radhakrishna  
Show more
2012
IEEE Transactions on Medical Imaging (T-MI)

It is becoming increasingly clear that mitochondria play an important role in neural function. Recent studies show mitochondrial morphology to be crucial to cellular physiology and synaptic function and a link between mitochondrial defects and neuro-degenerative diseases is strongly suspected. EM microscopy, with its very high resolution in all three directions, is one of the key tools to look more closely into these issues but the huge amounts of data it produces make automated analysis necessary. State-of-the-art computer vision algorithms designed to operate on natural 2D images tend to perform poorly when applied to EM data for a number of reasons. First, the sheer size of a typical EM volume renders most modern segmentation schemes intractable. Furthermore, most approaches ignore important shape cues, relying only on local statistics that easily become confused when confronted with noise and textures inherent in the data. Finally, the conventional assumption that strong image gradients always correspond to object boundaries is violated by the clutter of distracting membranes. In this work, we propose an automated graph partitioning scheme that addresses these issues. It reduces the computational complexity by operating on supervoxels instead of voxels, incorporates shape features capable of describing the 3D shape of the target objects, and learns to recognize the distinctive appearance of true boundaries. Our experiments demonstrate that our approach is able to segment mitochondria at a performance level close to that of a human annotator, and outperforms a state-of-the-art 3D segmentation technique.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1109/TMI.2011.2171705
Web of Science ID

WOS:000300197500027

Author(s)
Lucchi, Aurélien  
Smith, Kevin  
Achanta, Radhakrishna  
Knott, Graham  orcid-logo
Fua, Pascal  
Date Issued

2012

Publisher

Institute of Electrical and Electronics Engineers

Published in
IEEE Transactions on Medical Imaging (T-MI)
Volume

31

Issue

2

Start page

474

End page

486

Subjects

Electron microscopy

•

segmentation

•

supervoxels

•

mitochondria

•

shape features

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CVLAB  
IVRL  
Available on Infoscience
November 10, 2011
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/72388
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés