Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Normalized Gaussian path integrals
 
research article

Normalized Gaussian path integrals

Corazza, Giulio  
•
Fadel, Matteo
August 25, 2020
Physical Review E

Path integrals play a crucial role in describing the dynamics of physical systems subject to classical or quantum noise. In fact, when correctly normalized, they express the probability of transition between two states of the system. In this work, we show a consistent approach to solve conditional and unconditional Euclidean (Wiener) Gaussian path integrals that allow us to compute transition probabilities in the semiclassical approximation from the solutions of a system of linear differential equations. Our method is particularly useful for investigating Fokker-Planck dynamics and the physics of stringlike objects such as polymers. To give some examples, we derive the time evolution of the d-dimensional Ornstein-Uhlenbeck process and of the Van der Pol oscillator driven by white noise. Moreover, we compute the end-to-end transition probability for a charged string at thermal equilibrium, when an external field is applied.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés