Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Microstructure tailoring of selenium-core multimaterial optoelectronic fibers
 
research article

Microstructure tailoring of selenium-core multimaterial optoelectronic fibers

Yan, Wei  
•
Nguyen-Dang, Tung  
•
Cayron, Cyril  
Show more
2017
Optical Materials Express

The integration of semiconducting materials within thermally drawn multi-material polymer fibers is emerging as a versatile platform for flexible optoelectronics and advanced fabrics. Developing a deeper control over the microstructure of the electrically addressed semiconducting domains has so far been marginally explored. Here we compare a simple annealing treatment of the as-drawn fiber, with a laser-based approach to tailor the microstructure post-drawing. We show that the laser treatment enables better control over the crystallization depth and leads to a microstructure with significantly larger grains. These results are also revealed through optoelectronic characterization, where the better microstructure leads to significantly improved photoresponsivity and photosensitivity, compared to that of regular heat treated fiber, paving the way towards high performance optoelectronic polymer fiber devices.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés