Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes
 
research article

fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes

van der Zwaag, Wietske
•
Francis, Susan
•
Head, Kay
Show more
2009
NeuroImage

Blood oxygenation level dependent (BOLD) signal changes occurring during execution of a simple motor task were measured at field strengths of 1.5, 3 and 7 T using multi-slice, single-shot, gradient echo EPI at a resolution of 1x1x3 mm(3), to quantify the benefits offered by ultra-high magnetic field for functional MRI. Using four different echo times at each field strength allowed quantification of the relaxation rate, R(2)* and the change in relaxation rate on activation, DeltaR(2). This work adds to previous studies of the field strength dependence of BOLD signal characteristics, through its: (i) focus on motor rather than visual cortex; (ii) use of single-shot, multi-slice, gradient echo EPI for data acquisition; (iii) co-registration of images acquired at different field strengths to allow assessment of the BOLD signal changes in the same region at each field strength. DeltaR(2) was found to increase linearly with field strength (0.51+/-0.06 s(-1) at 1.5 T; 0.98+/-0.08 s(-1) at 3 T; 2.55+/-0.22 s(-1) at 7 T), while the ratio of DeltaR(2)/R(2), which dictates the accessible BOLD contrast was also found to increase (0.042+/-0.002 at 1.5 T; 0.054+/-0.002 at 3 T; 0.084+/-0.003 at 7 T). The number of pixels classified as active, the t-value calculated over a common region of interest and the percentage signal change in the same region were all found to peak at TE approximately T(2) and increase significantly with field strength. An earlier onset of the haemodynamic response at higher field provides some evidence for a reduced venous contribution to the BOLD signal at 7 T.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2009_NeuroImage_XF.pdf

Access type

restricted

Size

1.34 MB

Format

Adobe PDF

Checksum (MD5)

82b32b129b8c1afeaf241d8ea586aa40

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés