Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Stability Analysis of Input-Series/Output-Parallel Solid-State Transformers Equipped with Second-Order Harmonic Active Power Filters
 
research article

Stability Analysis of Input-Series/Output-Parallel Solid-State Transformers Equipped with Second-Order Harmonic Active Power Filters

Cervone, Andrea  
•
Wei, Tianyu  
•
Dujic, Drazen  
2024
IEEE Transactions on Power Electronics

Solid-State Transformers with Input-Series/Output-Parallel configuration offer a convenient solution for AC/DC conversion due to their scalability and modularity. In this configuration, each module experiences a second-order harmonic ripple caused by local single-phase AC/DC conversion. To neutralize this ripple, Active Power Filters can be installed, eliminating the need for oversized DC-bus capacitances. However, the presence of multiple APFs, working at the same time, can lead to dynamic interactions and potential instability due to the coupling between different ISOP SST modules. This study examines the mutual dynamics arising from multiple APFs in ISOP SSTs. It is shown that ensuring stability for the operation of a single APF does not automatically guarantee the overall stability when all APFs are simultaneously enabled. To study this phenomenon, an analysis approach based on the Generalized Nyquist Criterion for Multi-Input/Multi-Output systems is derived. Through the proposed approach, the closed-loop stability only needs to be verified towards two equivalent SST impedances that intrinsically considers the mutual coupling. This provides a simple design and verification tool for the APF controller, and the results are validated experimentally using a single-phase ISOP SST.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1109/TPEL.2024.3351314
Author(s)
Cervone, Andrea  
Wei, Tianyu  
Dujic, Drazen  
Date Issued

2024

Published in
IEEE Transactions on Power Electronics
Start page

1

End page

11

Subjects

Active filters

•

Stability criteria

•

Power harmonic filters

•

Voltage

•

Harmonic analysis

•

AC-DC power converters

•

MIMO communication

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
PEL  
Available on Infoscience
January 10, 2024
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/202837
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés