Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. The future of human-centric eXplainable Artificial Intelligence (XAI) is not post-hoc explanations
 
preprint

The future of human-centric eXplainable Artificial Intelligence (XAI) is not post-hoc explanations

Swamy, Vinitra  
•
Frej, Jibril Albachir  
•
Käser, Tanja  
2023

Explainable Artificial Intelligence (XAI) plays a crucial role in enabling human understanding and trust in deep learning systems, often defined as determining which features are most important to a model's prediction. As models get larger, more ubiquitous, and pervasive in aspects of daily life, explainability is necessary to avoid or minimize adverse effects of model mistakes. Unfortunately, current approaches in human-centric XAI (e.g. predictive tasks in healthcare, education, or personalized ads) tend to rely on a single explainer. This is a particularly concerning trend when considering that recent work has identified systematic disagreement in explainability methods when applied to the same points and underlying black-box models. In this paper, we therefore present a call for action to address the limitations of current state-of-the-art explainers. We propose to shift from post-hoc explainability to designing interpretable neural network architectures; moving away from approximation techniques in human-centric and high impact applications. We identify five needs of human-centric XAI (real-time, accurate, actionable, human-interpretable, and consistent) and propose two schemes for interpretable-by-design neural network workflows (adaptive routing for interpretable conditional computation and diagnostic benchmarks for iterative model learning). We postulate that the future of human-centric XAI is neither in explaining black-boxes nor in reverting to traditional, interpretable models, but in neural networks that are intrinsically interpretable.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JAIR_HHAI_XAI_Viewpoint_Paper_V2.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

CC BY

Size

1.51 MB

Format

Adobe PDF

Checksum (MD5)

11ee8e8a788ba945f729c4d8f35a9c75

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés