Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Monitoring of water table level and volume of water in a porous storage by seismic data
 
conference paper

Monitoring of water table level and volume of water in a porous storage by seismic data

Lähivaara, T.
•
Göransson, P.
•
Heinonen, S.
Show more
2023
29th European Meeting of Environmental and Engineering Geophysics, Held at Near Surface Geoscience Conference and Exhibition 2023, NSG 2023
29 European Meeting of Environmental and Engineering Geophysics

Neural networks provide an attractive framework to monitor the water table level and the volume of stored water in porous media from seismic data in an automated, fast and cost-efficient manner. In this work, a subsurface reservoir is modeled as a coupled three-dimensional poroviscoelastic-viscoelastic medium. The wave propagation from source to receiver(s) is numerically simulated using a nodal discontinuous Galerkin method coupled with an Adams-Bashforth time-stepping scheme on a graphics processing unit cluster. The wave field solver is used to generate databases for the neural network model to estimate the water table level and actual volume of water. We use a deconvolution-based approach to normalize the effect from the source wavelet. The results demonstrate the capacity of the fully connected neural network for estimating both the water table level and the volume of stored water in the porous storage reservoir from both synthetic and measured data.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés