Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Bretherton's buoyant bubble
 
research article

Bretherton's buoyant bubble

Dhaouadi, Wassim  
•
Kolinski, John M.  
December 2, 2019
Physical Review Fluids

When a buoyant bubble is inserted into a closed capillary that is slightly smaller than the capillary length, it appears stuck; exactly why this is so is a puzzle that has remained unanswered over the past 50 years. Recent calculations suggest that the bubble's motion is critically dependent on the hydrodynamics of the surrounding liquid film; however, quantitative measurements of these dynamics are lacking. We provide direct measurements of the dynamics of the liquid film surrounding a “stuck” bubble, recorded using interference microscopy. The film slowly relaxes to a constant thickness, and is stabilized by disjoining pressure at long times. The film's stability at this thickness is demonstrated by recovery after applied thermal perturbations; thus, we confirm that Bretherton's buoyant bubble is not pinned at a contact line, but is instead ostensibly stuck by extraordinarily slow flow in the surrounding liquid film whose thickness is set by a balance of capillary stress and disjoining pressure.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés