Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Multiscale Hemodynamics Using GPU Clusters
 
research article

Multiscale Hemodynamics Using GPU Clusters

Bisson, Mauro
•
Bernaschi, Massimo
•
Melchionna, Simone  
Show more
2012
Communications In Computational Physics

The parallel implementation of MUPHY, a concurrent multiscale code for large-scale hemodynamic simulations in anatomically realistic geometries, for multi-GPU platforms is presented. Performance tests show excellent results, with a nearly linear parallel speed-up on up to 32GPUs and a more than tenfold GPU/CPU acceleration, all across the range of GPUs. The basic MUPHY scheme combines a hydrokinetic (Lattice Boltzmann) representation of the blood plasma, with a Particle Dynamics treatment of suspended biological bodies, such as red blood cells. To the best of our knowledge, this represents the first effort in the direction of laying down general design principles for multiscale/physics parallel Particle Dynamics applications in non-ideal geometries. This configures the present multi-GPU version of MUPHY as one of the first examples of a high-performance parallel code for multiscale/physics biofluidic applications in realistically complex geometries.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés