Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Modeling of post-fire stiffness of E-glass fiber- reinforced polyester composites
 
research article

Modeling of post-fire stiffness of E-glass fiber- reinforced polyester composites

Bai, Y  
•
Keller, T  
2007
Composites Part A: Applied Science and Manufacturing

A new model is proposed to estimate the post-fire stiffness of FRP composites after different fire-exposure times. The model considers the E-modulus recovery of the material if cooled down from temperatures between glass transition and decomposition during the fire. Furthermore, based on this model, the through-thickness temperature gradients and remaining resin contents (RRC) can be calculated. Post-fire stiffness estimated by the new model and refined two- and three-layer post-fire models based on temperature or RRC criteria was compared with experimental results. A good agreement of calculated and measured post-fire stiffness of two full-scale cellular GFRP panels subjected to mechanical and thermal loading was found for fire-exposure times up to 2 h.[All rights reserved Elsevier].

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés