Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Two-phase flow operational maps for multi-microchannel evaporators
 
research article

Two-phase flow operational maps for multi-microchannel evaporators

Szczukiewicz, Sylwia  
•
Borhani, Navid  
•
Thome, John Richard  
2013
International Journal of Heat and Fluid Flow

The current paper presents new operational maps for several different multi-microchannel evaporators, with and without any inlet restrictions (micro-orifices), for the two-phase flow of refrigerants R245fa, R236fa, and R1234ze(E). The test fluids flowed in 67 parallel channels, each having a cross-sectional area of 100 × 100 μm^2. In order to emulate the power dissipated by active components in a 3D CMOS CPU chip, two aluminium microheaters were sputtered onto the back-side of the test section providing a 0.5 cm^2 each. Without any inlet restrictions in the micro-evaporator, significant parallel channel flow instabilities, vapor back flow, and flow maldistribution led to high-amplitude and high-frequency temperature and pressure oscillations. Such undesired phenomena were then prevented by placing restrictions at the inlet of each channel. High-speed flow visualization distinguished eight different operating regimes of the two-phase flow depending on the tested operating conditions. Therefore, the preferred operating regimes can be easily traced. In particular, flashing two-phase flow without back flow appeared to be the best operating regime without any flow and temperature instabilities.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés