Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Optimization for Reinforcement Learning: From a single agent to cooperative agents
 
research article

Optimization for Reinforcement Learning: From a single agent to cooperative agents

Lee, Donghwan
•
He, Niao
•
Kamalaruban, Parameswaran  
Show more
May 1, 2020
IEEE Signal Processing Magazine

Fueled by recent advances in deep neural networks, reinforcement learning (RL) has been in the limelight because of many recent breakthroughs in artificial intelligence, including defeating humans in games (e.g., chess, Go, StarCraft), self-driving cars, smart-home automation, and service robots, among many others. Despite these remarkable achievements, many basic tasks can still elude a single RL agent. Examples abound, from multiplayer games, multirobots, cellular-antenna tilt control, traffic-control systems, and smart power grids to network management.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés