Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. [13C]bicarbonate labelled from hyperpolarized [1-13C]pyruvate is an in vivo marker of hepatic gluconeogenesis in fasted state
 
research article

[13C]bicarbonate labelled from hyperpolarized [1-13C]pyruvate is an in vivo marker of hepatic gluconeogenesis in fasted state

Can, Emine  
•
Bastiaansen, Jessica A. M.  
•
Couturier, Dominique-Laurent
Show more
January 10, 2022
Communications Biology

Hyperpolarized [1-13C]pyruvate enables direct in vivo assessment of real-time liver enzymatic activities by 13C magnetic resonance. However, the technique usually requires the injection of a highly supraphysiological dose of pyruvate. We herein demonstrate that liver metabolism can be measured in vivo with hyperpolarized [1-13C]pyruvate administered at two- to three-fold the basal plasma concentration. The flux through pyruvate dehydrogenase, assessed by 13C-labeling of bicarbonate in the fed condition, was found to be saturated or partially inhibited by supraphysiological doses of hyperpolarized [1-13C]pyruvate. The [13C]bicarbonate signal detected in the liver of fasted rats nearly vanished after treatment with a phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, indicating that the signal originates from the flux through PEPCK. In addition, the normalized [13C]bicarbonate signal in fasted untreated animals is dose independent across a 10-fold range, highlighting that PEPCK and pyruvate carboxylase are not saturated and that hepatic gluconeogenesis can be directly probed in vivo with hyperpolarized [1-13C]pyruvate.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s42003-021-02978-2 (3).pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.82 MB

Format

Adobe PDF

Checksum (MD5)

fad8de7369d73b0c936a4061125e05f0

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés