Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits
 
conference paper

A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits

Rizzi, Carmine
•
Guerrieri, Andrea  
•
Ienne, Paolo  
Show more
January 1, 2022
2022 32Nd International Conference On Field-Programmable Logic And Applications, Fpl
32nd International Conference on Field-Programmable Logic and Applications (FPL)

The ability of dataflow circuits to implement dynamic scheduling promises to overcome the conservatism of static scheduling techniques that high-level synthesis tools typically rely on. Yet, the same distributed control mechanism that allows dataflow circuits to achieve high-throughput pipelines when static scheduling cannot also causes long critical paths and frequency degradation. This effect reduces the overall performance benefits of dataflow circuits and makes them an undesirable solution in broad classes of applications. In this work, we provide an in-depth study of the timing of dataflow circuits. We develop a mathematical model that accurately captures combinational delays among different dataflow constructs and appropriately places buffers to control the critical path. On a set of benchmarks obtained from C code, we show that the circuits optimized by our technique accurately meet the clock period target and result in a critical path reduction of up to 38% compared to prior solutions.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés