Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dynamic stability of displacement-based atomistic/continuum coupling methods
 
research article

Dynamic stability of displacement-based atomistic/continuum coupling methods

Junge, Till  
•
Anciaux, Guillaume  
•
Molinari, Jean-Francois  
2015
Journal Of The Mechanics And Physics Of Solids

We show that concurrent atomistic/continuum displacement-coupling methods are inherently unstable in the context of fully dynamic problems at finite temperature. The fundamental origin of the instability is the displacement coupling of two material descriptions of which one exhibits a traction-compression asymmetry. Since this asymmetry applies to all realistic interatomic potentials, the results and conclusions should apply to all displacement-coupling multiscale methods. A few approaches to mitigate or completely avoid the instability are discussed including a promising new method for coupling local and non-local material descriptions in a ghost force-free, dynamic and stable way that does not require a well-defined Hamiltonian of the system. (C) 2015 Elsevier Ltd. All rights reserved.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés