Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. On the Use of Shape-Constrained Splines for Biokinetic Process Modelling
 
conference paper

On the Use of Shape-Constrained Splines for Biokinetic Process Modelling

Masic, Alma
•
Srinivasan, Sriniketh  
•
Billeter, Julien  
Show more
2016
Ifac Papersonline
11th IFAC Symposium on Dynamics and Control of Process Systems (DYCOPS) - CAB

Identification of mathematical models is an important task for the design and the optimization of biokinetic processes. Monod or Tessier growth-rate models are often chosen by default, although these models are not able to represent the dynamics of all bacterial growth processes. This imperfect representation then affects the quality of the model prediction. This paper introduces an alternative approach, which is based on constraints such as monotonicity and concavity and the use of shape-constrained spline functions, to describe the substrate affinity with high parametric flexibility. This way, the difficult task of searching through potentially incomplete rate-model libraries can be circumvented. A simulated case study is used to illustrate the superiority of the proposed method to represent non-ideal growth conditions, where neither Monod nor Tessier kinetics offer a good approximation.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés