Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Calibration by Correlation Using Metric Embedding from Nonmetric Similarities
 
research article

Calibration by Correlation Using Metric Embedding from Nonmetric Similarities

Censi, Andrea
•
Scaramuzza, Davide
2013
IEEE Transactions on Pattern Analysis and Machine Intelligence

This paper presents a new intrinsic calibration method that allows us to calibrate a generic single-view point camera just by waving it around. From the video sequence obtained while the camera undergoes random motion, we compute the pairwise time correlation of the luminance signal for a subset of the pixels. We show that if the camera undergoes a random uniform motion, then the pairwise correlation of any pixels pair is a function of the distance between the pixel directions on the visual sphere. This leads to formalizing calibration as a problem of metric embedding from nonmetric measurements: We want to find the disposition of pixels on the visual sphere from similarities that are an unknown function of the distances. This problem is a generalization of multidimensional scaling (MDS) that has so far resisted a comprehensive observability analysis (can we reconstruct a metrically accurate embedding?) and a solid generic solution (how do we do so?). We show that the observability depends both on the local geometric properties (curvature) as well as on the global topological properties (connectedness) of the target manifold. We show that, in contrast to the euclidean case, on the sphere we can recover the scale of the points distribution, therefore obtaining a metrically accurate solution from nonmetric measurements. We describe an algorithm that is robust across manifolds and can recover a metrically accurate solution when the metric information is observable. We demonstrate the performance of the algorithm for several cameras (pin-hole, fish-eye, omnidirectional), and we obtain results comparable to calibration using classical methods. Additional synthetic benchmarks show that the algorithm performs as theoretically predicted for all corner cases of the observability analysis.

  • Details
  • Metrics
Type
research article
DOI
10.1109/TPAMI.2013.34
Author(s)
Censi, Andrea
Scaramuzza, Davide
Date Issued

2013

Published in
IEEE Transactions on Pattern Analysis and Machine Intelligence
Volume

35

Issue

10

Start page

2357

End page

2370

Subjects

Intrinsic camera calibration

•

Metric embedding

•

Catadioptric cameras

•

Pin-hole cameras

•

Fish-eye cameras

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
NCCR-ROBOTICS  
Available on Infoscience
June 16, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/104412
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés