Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Quantification of the local magnetized nanotube domains accelerating the photocatalytic removal of the emerging pollutant tetracycline
 
Loading...
Thumbnail Image
research article

Quantification of the local magnetized nanotube domains accelerating the photocatalytic removal of the emerging pollutant tetracycline

Yu, Jiajie
•
Kiwi, John  
•
Zivkovic, Ivica  
Show more
July 5, 2019
Applied Catalysis B-Environmental

( )Evidence is presented for the enhanced photodegradation of tetracycline (TC) by AgxO/FeOx/ZnO nanotubes (NTs) compared to AgxO/ZnO nanotubes under low-intensity solar light irradiation. A higher amount of the local magnetic domains with random orientation in the AgxO/FeOx,/ZnO NTs lead to a faster TC-degradation. Fe introduces intra-gap states in the ZnO NTs facilitating the e-transport under light. The AgxO/FeOx/ZnO nanotubes were observed to present predominantly semiconductor behavior during the light induced TC-degradation. The nature of the interaction between non-polarized photos with the local domains due the addition of Fe is discussed. By X-ray photoelectron spectroscopy (XPS) redox reactions were observed on the nanotube surface NTs leading to the reactive oxygen radical species (ROS). The ROS-intermediates were identified by appropriate scavengers. Fast TC-degradation kinetics was attained by a catalyst with a composition AgOx(5.8%)FeOx(21.9%) ZnO (72.3%) as determined by X-ray fluorescence (XRF). A scheme for the interfacial charge transfer (IFCT) between the oxides on the nanotube surface is presented. Magnetized nanotubes present a practical potential in environmental cleaning avoiding the high cost separation of the catalyst from the reaction media at the end of the process

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés