Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Aerosol hygroscopicity at high (99 to 100%) relative humidities
 
research article

Aerosol hygroscopicity at high (99 to 100%) relative humidities

Ruehl, C. R.
•
Chuang, P. Y.
•
Nenes, Athanasios  
2010
Atmospheric Chemistry And Physics

The hygroscopicity of an aerosol strongly influences its effects on climate and, for smaller particles, atmospheric lifetime. While many aerosol hygroscopicity measurements have been made at lower relative humidities (RH) and under cloud formation conditions (RH>100%), relatively few have been made at high RH (99 to 100%), where the Kelvin (curvature) effect is comparable to the Raoult (solute) effect. We measured the size of droplets at high RH that had formed on particles composed of one of seven compounds with dry diameters between 0.1 and 0.5 μm. We report the hygroscopicity of these compounds using a parameterization of the Kelvin term, in addition to a standard parameterization (κ) of the Raoult term. For inorganic compounds, hygroscopicity could reliably be predicted using water activity data (measured in macroscopic solutions) and assuming a surface tension of pure water. In contrast, most organics exhibited a slight to mild increase in hygroscopicity with droplet diameter. This trend was strongest for sodium dodecyl sulfate (SDS), the most surface-active compound studied. The results suggest that, for single-component aerosols at high RH, partitioning of solute to the particle-air interface reduces particle hygroscopicity by reducing the bulk solute concentration. This partitioning effect is more important than the increase in hygroscopicity due to surface tension reduction. Furthermore, we found no evidence that micellization limits SDS activity in micron-sized solution droplets, as observed in macroscopic solutions. We conclude that while the high-RH hygroscopicity of inorganic compounds can be reliably predicted using readily available data, surface-activity parameters obtained from macroscopic solutions with organic solutes may be inappropriate for calculations involving micron-sized droplets.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.5194/acp-10-1329-2010
Author(s)
Ruehl, C. R.
Chuang, P. Y.
Nenes, Athanasios  
Date Issued

2010

Publisher

Copernicus GmbH

Published in
Atmospheric Chemistry And Physics
Volume

10

Start page

1329

End page

1344

Subjects

aerosol formation

•

cloud droplet

•

concentration (composition)

•

detergent

•

hygroscopicity

•

parameterization

•

particle size

•

partitioning

•

relative humidity

•

surface tension

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LAPI  
Available on Infoscience
October 15, 2018
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/149024
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés