Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Books and Book parts
  4. POP-C++ and Alpine3D: Petition for a New HPC Approach
 
book part or chapter

POP-C++ and Alpine3D: Petition for a New HPC Approach

Kuonen, P.
•
Bavay, M.
•
Lehning, Michael  
2010
Advanced ICTs for Disaster Management and Threat Detection: Collaborative and Distributed Frameworks

In the developed world, an ever better and finer understanding of the processes leading to natural hazards is expected. This is in part achieved using the invaluable tool of numerical modeling, which offers the possibility of applying scenarios to a given situation. This in turn leads to a dramatic increase in the complexity of the processes that the scientific community wants to simulate. A numerical model is becoming more and more like a galaxy of various sub-process models, each with their own numerical characteristics. The traditional approach to High Performance Computing (HPC) can hardly face this challenge without rethinking its paradigms. A possible evolution would be to move away from the Single Program, Multi Data (SPMD) approach and towards an approach that leverages the well known Object Oriented approach. This evolution is at the foundation of the POP parallel programming model that is presented here, as well as its C++ implementation, POP-C++.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés