Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Two-Carbon Ring Expansion of Cyclobutanols to Cyclohexenones Enabled by Indole Radical Cation Intermediate: Development and Application to a Total Synthesis of Uleine
 
research article

Two-Carbon Ring Expansion of Cyclobutanols to Cyclohexenones Enabled by Indole Radical Cation Intermediate: Development and Application to a Total Synthesis of Uleine

Leclair, Alexandre  
•
Wang, Qian
•
Zhu, Jieping  
January 5, 2022
Acs Catalysis

A single-electron transfer (SET) oxidation of indole or benzo[b]thiophene to a radical cation reverses the intrinsic polarity of these pi-excessive bicyclic heteroarenes. Here we report an oxidative two-carbon homologation of cyclobutanols to cyclohexenones under a visible-light photoredox catalysis. 1-(Indol-2-yl)cyclobutan-1-ols are converted to 2,3,4,9-tetrahydro-1H-carbazol-1-ones, important structural motifs found in alkaloids and pharmaceuticals, with a broad substrate scope. A mechanistic study suggests that the reaction is initiated by an SET from an indole to an excited acridinium salt to generate the radical cation, which is followed by two consecutive 1,2-alkyl migrations and a rearomatization. Benzo[b]thiophene-substituted cyclobutanols are similarly converted to 2,3-dihydrodibenzo[b,d]thiophen-4(1H)-ones. A total synthesis of (+/-)-uleine featuring this ring-expansion process is documented.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés