Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer
 
research article

Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer

Zhang, Hanfei
•
Wang, Ligang
•
Maréchal, François  
Show more
July 15, 2020
Applied Energy

Thermochemical biomass-to-fuel conversion requires an increased hydrogen concentration in the syngas derived from gasification, which is currently achieved by water–gas-shift reaction and CO2 removal. State-of-the-art biomass-to-fuels convert less than half of the biomass carbon with the remaining emitted as CO2. Full conversion of biomass carbon can be achieved by integrating solid-oxide electrolyzer with different concepts: (1) steam electrolysis with the hydrogen produced injected into syngas, and (2) co-electrolysis of CO2 and H2O to convert the CO2 captured from the syngas. This paper investigates techno-economically steam- or co-electrolysis-based biomass-to-fuel processes for producing synthetic natural gas, methanol, dimethyl ether and jet fuel, considering system-level heat integration and optimal placement of steam cycles for heat recovery. The results show that state-of-the-art biomass-to-fuels achieve similar energy efficiencies of 48–51% (based on a lower heating value) for the four different fuels. The integrated concept with steam electrolysis achieves the highest energy efficiency: 68% for synthetic natural gas, 64% for methanol, 63% for dimethyl ether, and 56% for jet fuel. The integrated concept with co electrolysis can enhance the state-of-the-art energy efficiency to 66% for synthetic natural gas, 61% for methanol, and 54% for jet fuel. The biomass-to-dimethyl ether with co-electrolysis only reaches an efficiency of 49%, due to additional heat demand. The levelized cost of the product of the integrated concepts highly depends on the price and availability of renewable electricity. The concept with co-electrolysis allows for additional operation flexibility without renewable electricity, resulting in high annual production. Thus, with limited annual available hours of renewable electricity, biomass-to-fuel with co-electrolysis is more economically convenient than that with steam electrolysis. For a plant scale of 60 MWth biomass input with the renewable electricity available for 1800 h annually, the levelized cost of product of biomass-to-synthesis-natural-gas with co-electrolysis is 35 $/GJ, 20% lower than that with steam-electrolysis.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.apenergy.2020.115113
Author(s)
Zhang, Hanfei
Wang, Ligang
Maréchal, François  
Desideri, Umberto
Van Herle, Jan  
Date Issued

2020-07-15

Published in
Applied Energy
Volume

270

Article Number

115113

Subjects

Biomass gasification

•

Biomass-to-fuel

•

power-to-liquid

•

power-to-gas

•

Energy storage

•

Solid-oxide electrolyzer

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
SCI-STI-JVH  
Available on Infoscience
September 21, 2020
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/171820
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés