Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Buffer Placement and Sizing for High-Performance Dataflow Circuits
 
conference paper

Buffer Placement and Sizing for High-Performance Dataflow Circuits

Josipovic, Lana  
•
Sheikhha, Shabnam
•
Guerrieri, Andrea  
Show more
January 1, 2020
2020 Acm/Sigda International Symposium On Field-Programmable Gate Arrays (Fpga '20)
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA)

Commercial high-level synthesis tools typically produce statically scheduled circuits. Yet, effective C-to-circuit conversion of arbitrary software applications calls for dataflow circuits, as they can handle efficiently variable latencies (e.g., caches) and unpredictable memory dependencies. Dataflow circuits exhibit an unconventional property: registers (usually referred to as "buffers") can be placed anywhere in the circuit without changing its semantics, in strong contrast to what happens in traditional datapaths. Yet, although functionally irrelevant, this placement has a significant impact on the circuit's timing and throughput. In this work, we show how to strategically place buffers into a dataflow circuit to optimize its performance. Our approach extracts a set of choice-free critical loops from arbitrary dataflow circuits and relies on the theory of marked graphs to optimize the buffer placement and sizing. We demonstrate the performance benefits of our approach on a set of dataflow circuits obtained from imperative code.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés