Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Adaptation in Online Social Learning
 
conference paper

Adaptation in Online Social Learning

Bordignon, Virginia  
•
Matta, Vincenzo
•
Sayed, Ali H.  
January 1, 2020
28Th European Signal Processing Conference (Eusipco 2020)
28th European Signal Processing Conference (EUSIPCO)

This work studies social learning under non-stationary conditions. Although designed for online inference, traditional social learning algorithms perform poorly under drifting conditions. To mitigate this drawback, we propose the Adaptive Social Learning (ASL) strategy. This strategy leverages an adaptive Bayesian update, where the adaptation degree can be modulated by tuning a suitable step-size parameter. The learning performance of the ASL algorithm is examined by means of a steady-state analysis. It is shown that, under the regime of small step-sizes: i) consistent learning is possible; ii) and an accurate prediction of the performance can be furnished in terms of a Gaussian approximation.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés