Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Discrete time stochastic hybrid dynamical games: Verification & controller synthesis
 
conference paper

Discrete time stochastic hybrid dynamical games: Verification & controller synthesis

Kamgarpour, Maryam  
•
Ding, J.
•
Summers, S.
Show more
2011
Proceedings of the IEEE Conference on Decision and Control
Proceedings of the IEEE Conference on Decision and Control

This paper presents a framework for analyzing probabilistic safety and reachability problems for discrete time stochastic hybrid systems in scenarios where system dynamics are affected by rational competing agents. In particular, we consider a zero-sum game formulation of the probabilistic reach-avoid problem, in which the control objective is to maximize the probability of reaching a desired subset of the hybrid state space, while avoiding an unsafe set, subject to the worst-case behavior of a rational adversary. Theoretical results are provided on a dynamic programming algorithm for computing the maximal reach-avoid probability under the worst-case adversary strategy, as well as the existence of a max-min control policy which achieves this probability. The modeling framework and computational algorithm are demonstrated using an example derived from a robust motion planning application. © 2011 IEEE.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés