Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. On the Generalization of Stochastic Gradient Descent with Momentum
 
research article

On the Generalization of Stochastic Gradient Descent with Momentum

Ramezani-Kebrya, Ali
•
Antonakopoulos, Kimon  
•
Cevher, Volkan  orcid-logo
Show more
January 1, 2024
Journal of Machine Learning Research

While momentum-based accelerated variants of stochastic gradient descent (SGD) are widely used when training machine learning models, there is little theoretical understanding on the generalization error of such methods. In this work, we first show that there exists a convex loss function for which the stability gap for multiple epochs of SGD with standard heavy-ball momentum (SGDM) becomes unbounded. Then, for smooth Lipschitz loss functions, we analyze a modified momentum-based update rule, i.e., SGD with early momentum (SGDEM) under a broad range of step-sizes, and show that it can train machine learning models for multiple epochs with a guarantee for generalization. Finally, for the special case of strongly convex loss functions, we find a range of momentum such that multiple epochs of standard SGDM, as a special form of SGDEM, also generalizes. Extending our results on generalization, we also develop an upper bound on the expected true risk, in terms of the number of training steps, sample size, and momentum. Our experimental evaluations verify the consistency between the numerical results and our theoretical bounds. SGDEM improves the generalization error of SGDM when training ResNet-18 on ImageNet in practical distributed settings.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés