Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Revisiting the Impact of Morphology and Oxidation State of Cu on CO2 Reduction Using Electrochemical Flow Cell
 
research article

Revisiting the Impact of Morphology and Oxidation State of Cu on CO2 Reduction Using Electrochemical Flow Cell

Asiri, Abdullah M.
•
Gao, Jing  
•
Khan, Sher Bahadar
Show more
January 4, 2022
The Journal of Physical Chemistry Letters

Electroreduction of carbon dioxide (CO2) in a flow electrolyzer represents a promising carbon-neutral technology with efficient production of valuable chemicals. In this work, the catalytic performance of polycrystalline copper (Cu), Cu2O-derived copper (O(I)D-Cu), and CuO-derived copper (O(II)D-Cu) toward CO2 reduction is unraveled in a custom-designed flow cell. A peak Faradaic efficiency of >70% and a production rate of ca. -250 mA cm(-2) toward C2+ products have been achieved on all the catalysts. In contrast to previous studies that reported a propensity for C2+ products on OD-Cu in conventional H-cells, the selectivity and activity of ethylene-dominated C2+ products are quite similar on the three types of catalysts at the same current density in our flow reactor. Our analysis also reveals current density to be a critical factor determining the C-C coupling in a flow cell, regardless of Cu catalyst's initial oxidation state and morphology.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés