Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Graph Regularization Network With Semantic Affinity For Weakly-Supervised Temporal Action Localization
 
conference paper

Graph Regularization Network With Semantic Affinity For Weakly-Supervised Temporal Action Localization

Park, Jungin
•
Lee, Jiyoung
•
Jeon, Sangryul
Show more
January 1, 2019
2019 Ieee International Conference On Image Processing (Icip)
26th IEEE International Conference on Image Processing (ICIP)

This paper presents a novel deep architecture for weakly-supervised temporal action localization that not only generates segment-level action responses but also propagates segment-level responses to the neighborhood in a form of graph Laplacian regularization. Specifically, our approach consists of two sub-modules; a class activation module to estimate the action score map over time through the action classifiers, and a graph regularization module to refine the estimated action score map by solving a quadratic programming problem with the predicted segment-level semantic affinities. Since these two modules are integrated with fully differentiable layers, the proposed networks can be jointly trained in an end-to-end manner. Experimental results on Thumos14 and ActivityNet1.2 demonstrate that the proposed method provides outstanding performances in weakly-supervised temporal action localization.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés