Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Extendability of Continuous Maps Is Undecidable
 
research article

Extendability of Continuous Maps Is Undecidable

Cadek, Martin
•
Krcal, Marek
•
Matousek, Jiri
Show more
2014
Discrete & Computational Geometry

We consider two basic problems of algebraic topology: the extension problem and the computation of higher homotopy groups, from the point of view of computability and computational complexity. The extension problem is the following: Given topological spaces X and Y, a subspace AaS dagger X, and a (continuous) map f:A -> Y, decide whether f can be extended to a continuous map . All spaces are given as finite simplicial complexes, and the map f is simplicial. Recent positive algorithmic results, proved in a series of companion papers, show that for (k-1)-connected Y, ka parts per thousand yen2, the extension problem is algorithmically solvable if the dimension of X is at most 2k-1, and even in polynomial time when k is fixed. Here we show that the condition cannot be relaxed: for , the extension problem with (k-1)-connected Y becomes undecidable. Moreover, either the target space Y or the pair (X,A) can be fixed in such a way that the problem remains undecidable. Our second result, a strengthening of a result of Anick, says that the computation of pi (k) (Y) of a 1-connected simplicial complex Y is #P-hard when k is considered as a part of the input.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés