Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Scalable Multi-agent Reinforcement Learning for Residential Load Scheduling Under Data Governance
 
research article

Scalable Multi-agent Reinforcement Learning for Residential Load Scheduling Under Data Governance

Qin, Zhaoming  
•
Dong, Nanqing
•
Liu, Di
Show more
January 1, 2025
IEEE Transactions On Industrial Cyber-physical Systems

As a data-driven approach, multi-agent reinforcement learning (MARL) has made remarkable advances in solving cooperative residential load scheduling problems. However, centralized training, the most common paradigm for MARL, limits large-scale deployment in communication-constrained cloud-edge environments. As a remedy, distributed training shows unparalleled advantages in real-world applications but still faces challenge with system scalability, e.g., the high cost of communication overhead during coordinating individual agents, and needs to comply with data governance in terms of privacy. In this work, we propose a novel MARL solution to address these two practical issues. Our proposed approach is based on actor-critic methods, where the global critic is a learned function of individual critics computed solely based on local observations of households. This scheme preserves household privacy completely and significantly reduces communication cost. Simulation experiments demonstrate that the proposed framework achieves comparable performance to the state-of-the-art actor-critic framework without data governance and communication constraints.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés