Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Discrete least-squares approximations over optimized downward closed polynomial spaces in arbitrary dimension
 
research article

Discrete least-squares approximations over optimized downward closed polynomial spaces in arbitrary dimension

Cohen, Albert
•
Migliorati, Giovanni  
•
Nobile, Fabio  
2017
Constructive Approximation

We analyze the accuracy of the discrete least-squares approximation of a function $u$ in multivariate polynomial spaces $P_\Lambda:=span{y\mapsto y^\nu ,: , \nu\in \Lambda}$ with $\Lambda\subset N_0^d$ over the domain $\Gamma:=[-1,1]^d$, based on the sampling of this function at points $y^1,\dots,y^m \in \Gamma$. The samples are independently drawn according to a given probability density $\rho$ belonging to the class of multivariate beta densities, which includes the uniform density as a particular case. Motivated by recent results in high-dimensional parametric and stochastic PDEs, we restrict our attention to polynomial spaces associated with \emph{downward closed} sets $\Lambda$ of \emph{prescribed} cardinality $n$ and we optimize the choice of the space for the given sample. This implies in particular that the selected polynomial space depends on the sample. We are interested in comparing the error of this least-squares approximation measured in $L^2(\Gamma,\rho)$ with the best achievable polynomial approximation error when using downward closed sets of cardinality $n$. We establish conditions between the dimension $n$ and the size $m$ of the sample, under which these two errors are proven to be comparable. We show that the dimension $d$ enters only moderately in the resulting trade-off between $m$ and $n$, in terms of a logarithmic factor $\ln(d)$, and is even absent when the optimization is restricted to a relevant subclass of downward closed sets. In principle, this allows one to use these methods in high dimension. Our analysis builds upon (Chkifa et al. in ESAIM Math Model Numer Anal 49(3):815–837, 2015), which considered fixed and non-optimized downward closed multi-index sets. Potential applications of the proposed results are found in the development and analysis of efficient numerical methods for computing the solution of high-dimensional parametric or stochastic PDEs, but is not limited to this area.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1007/s00365-017-9364-8
Web of Science ID

WOS:000405396300008

Author(s)
Cohen, Albert
Migliorati, Giovanni  
Nobile, Fabio  
Date Issued

2017

Published in
Constructive Approximation
Volume

45

Issue

3

Start page

497

End page

519

Subjects

convergence rate

•

discrete least squares

•

best n-term approximation

•

downward closed set

•

multivariate polynomial approximation

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CSQI  
RelationURL/DOI

IsNewVersionOf

https://infoscience.epfl.ch/record/263553
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/120401
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés