Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. CLOAF: CoLlisiOn-Aware Human Flow
 
conference paper

CLOAF: CoLlisiOn-Aware Human Flow

Davydov, Andrey  
•
Engilberge, Martin  
•
Salzmann, Mathieu
Show more
June 16, 2024
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition CVPR 2024

Even the best current algorithms for estimating body 3D shape and pose yield results that include body self- intersections. In this paper, we present CLOAF, which exploits the diffeomorphic nature of Ordinary Differential Equations to eliminate such self-intersections while still imposing body shape constraints. We show that, unlike earlier approaches to addressing this issue, ours completely eliminates the self-intersections without compromising the accuracy of the reconstructions. Being differentiable, CLOAF can be used to fine-tune pose and shape estimation baselines to improve their overall performance and eliminate self-intersections in their predictions. Furthermore, we demonstrate how our CLOAF strategy can be applied to practically any motion field induced by the user. CLOAF also makes it possible to edit motion to interact with the environment without worrying about potential collision or loss of body-shape prior.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés