Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A micro particle shadow velocimetry (mu PSV) technique to measure flows in microchannels
 
research article

A micro particle shadow velocimetry (mu PSV) technique to measure flows in microchannels

Khodaparast, Sepideh  
•
Borhani, Navid
•
Tagliabue, Giulia
Show more
2013
Experiments In Fluids

A micro particle shadow velocimetry (mu PSV) system based on back-lit illumination and forward scatter observation of light from non-fluorescent particles has been developed. Relatively high luminous efficiencies and particle image contrasts were achieved by using the condenser stage of a standard transmitted light microscope and a continuous incoherent collimated light emitting diode (LED). This paper includes a critical review of the operating principles, benefits and practical problems associated with the predominant epifluorescent micro particle image velocimetry (mu PIV) technique, and the less common light scattering mu PIV methods of which mu PSV is a development. This mu PSV system was then successfully used to measure axial velocity profiles in a 280-mu m-diameter circular channel up to a Reynolds number of 50 which corresponds to peak velocities of around 0.4 m/s. These velocity profiles were then integrated to provide instantaneous flow rates on the order of 100 mu l/min to an accuracy of +/- 5 % relative to average flow rates determined using a digital balance. Due to the incoherent nature of the LED light source, the back-lit forward scatter observation mode and the applied refractive index matching system, the location of the test section walls and thus the local velocity fields were also accurately obtained. As a result of this, mu PSV provides a low cost and safe way to investigate microfluidics, especially in lab-on-a-chip applications where the necessary optical access through transparent test sections is often available.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1007/s00348-013-1474-x
Web of Science ID

WOS:000318156200026

Author(s)
Khodaparast, Sepideh  
Borhani, Navid
Tagliabue, Giulia
Thome, John Richard  
Date Issued

2013

Publisher

Springer-Verlag

Published in
Experiments In Fluids
Volume

54

Issue

2

Article Number

1474

Note

National Licences

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LNET  
LTCM  
Available on Infoscience
October 1, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/95179
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés