Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Durability of Nanosized Oxygen-Barrier Coatings on Polymers
 
research article

Durability of Nanosized Oxygen-Barrier Coatings on Polymers

Leterrier, Y.  
2003
Progess in Materials Science

Research on silicon oxide thin films developed as gas-barrier protection for polymer-based components is reviewed, with attention paid to the relations between (i) coating defects, cohesive strength and internal stress state, and (ii) interfacial interactions and related adhesion to the substrate. The deposition process of the oxide from a vapor or a plasma phase leads in both cases to the formation of covalent bonds between the two materials, with high adhesion levels. The oxide coating contains nanoscopic defects and microscopic flaws, and their respective effect on the barrier performance and mechanical resistance of the coating is analyzed. Potential improvements are discussed, including the control of internal stresses in the coating during deposition. Controlled levels of compressive internal stresses in the coating are beneficial to both the barrier performance and the mechanical reliability of the coated polymer. An optimal coating thickness, with low oxygen permeation and high cohesive strength, is determined from experimental and theoretical analyses of the failure mechanisms of the coating under mechanical load. These investigations are found relevant to tailor the interactions and stress state in the interfacial region, in order to improve the reliability of the coating/substrate assembly.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1016/S0079-6425(02)00002-6
Author(s)
Leterrier, Y.  
Date Issued

2003

Published in
Progess in Materials Science
Volume

48

Issue

1

Start page

1

End page

55

Subjects

Gas barrier

•

Thin film

•

Internal stresses

•

cohesive properties

•

adhesion

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LTC  
Available on Infoscience
June 26, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/232335
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés