research article
Minimal Polynomials Of Unipotent Elements Of Non-Prime Order In Irreducible Representations Of The Exceptional Algebraic Groups In Some Good Characteristics
January 1, 2019
In a number of cases the minimal polynomials of the images of unipotent elements of non-prime order in irreducible representations of the exceptional algebraic groups in good characteristics are found. It is proved that if p > 5 for a group of type E-8 and p > 3 for other exceptional algebraic groups, then for irreducible representations of these groups in characteristic p with large highest weights with respect to p, the degree of the minimal polynomial of the image of a unipotent element is equal to the order of this element.